Mirka® Cafro EDG
Unmatched corner stability
In CNC solid carbide rotating tool grinding, one of the most critical factors is corner holding ability, to ensure correct tolerances on Ø and stable rake angle. Automatization and unmanned operation mean no constant adjustment can be made to program values.

The best solution is EDG, especially when compared with hard resin bonds or hard hybrids. With EDG, there is no need to change parameters for feed, speed or depth of cut. Less need for reprofiling provides a longer wheel life in comparison to TOP/PRO hard resin bonds or hard hybrids such as M414.

With advanced Mirka® Cafro products, precision meets dedication. We offer the best edge retention and corner stability on the market, giving you a better finish in less time – all for your peace of mind.

- **Corner holding – the critical factor**

 In CNC solid carbide rotating tool grinding, one of the most critical factors is corner holding ability, to ensure correct tolerances on Ø and stable rake angle. Automatization and unmanned operation mean no constant adjustment can be made to program values.

- **Trouble-free EDG**

 The best solution is EDG, especially when compared with hard resin bonds or hard hybrids. With EDG, there is no need to change parameters for feed, speed or depth of cut. Less need for reprofiling provides a longer wheel life in comparison to TOP/PRO hard resin bonds or hard hybrids such as M414.

- **Longer dressing intervals**

 In micro tools, tolerances are more restricted and the corner must remain sharp. Less need for program corrections saves time. This is especially true for large series of identical pieces and unmanned operations. Additionally, longer dressing intervals improves quality and operational economy.

- **Better thermal resistance**

 The EDG family uses a more elastic and thermally stable resin, which enables strong grit holding even at higher grinding temperatures. At the same grit size and concentration, EDG wheels enable better finishing compared to hard resin and hybrid bonds.